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Trapping of vibrational energy in crumpled sheets
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We investigate the propagation of transverse elastic waves in crumpled media. We set up the wave equation
for transverse waves on a generic curved, strained surface via a Langrangian formalism and use this to study
the scaling behavior of the dispersion curves near the ridges and on the flat facets. This analysis suggests that
ridges act as barriers to wave propagation and that modes in a certain frequency regime could be trapped in the
facets. A simulation study of the wave propagation qualitatively supported our analysis and showed interesting
effects of the ridges on wave propagation.
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[. INTRODUCTION In Sec. Il, we briefly review classical thin membrane
theory and gather the results we need. In Sec. lll, we derive

Waves show distinctive behavior when they propagatghe wave equations for transverse waves on a generic curved,
through media that are strongly heterogeneous. Among thesérained surface from a Langrangian formulation. Section IV
behaviors are localizatiofil], multiple propagation paths is devoted to studying the form of the dispersion relations in
and lensing[2]. These phenomena depend strongly on thehe two distinct regiongridges and facejsand also the scal-
type of wave (electromagnetic, Schroedinger, vibrational N9 behaV|o_r of the dispersions with 'thlpkness of the sheet.
and the type of heterogeneity. Thls analysis flrst suggests the pOSS|b|I|ty of trapped energy

We treat a type of heterogeneity that arises naturally id" the facets with ridges serving as barriers. In Sec. V, we
materials, but whose effect on waves has not been studiediScuss in detail the simulations we performed and compare
crumpled membranes. The disorder introduced by crumplinghem to our analytical predictions. Finally, we discuss the
is much different from the random disorder usually consid-mplications of our work and the scope for future work in
ered. Instead of a structureless disorder, crumpled shee®€C. VI.
consist of uniform, flat facets bordered by strongly curved
and stretched borders called elastic ridg&40]. Vibrational Il. THIN MEMBRANE THEORY
waves are expected to propagate much differently in the fac-
ets and in the border regions. Crumpled sheets of newsprint
paper are commonly used as an insulating and protectiv[eﬂ
enclosure, but we know of no characterization of their vibra-
tional isolation or transmissions properties.

We anticipate various possible effects. We imagine oscil

Our findings are based on the classical theory of thin
embraneg§3]. If the thickness is small then we may assume
at all variables may be integrated over the thickness of the
membrane and it can be regarded as a two-dimensi{gnal
surface[3]. To define a surface uniquely up to overall trans-
lating a point on the membrane and investigating the re[ations and rotations it is sufficier_lt tq specify a,metric tensor
sponse as a function of distance from this source as conpge? ar.'d a curvature tensm-aﬁ S?t'SfV'.”g GaL.'SS 3 heorema
pared with a flat, uniform sheet. First, there are two natura gregmmand .the. .Codazeramardl equat|oﬁ$]: To see
regimes of vibrational frequency to be considered. Low fre—the phy_5|c_al S|gn|f|cancg of these tensors we f_|rst_ note that
quencies are expected to produce vibrations with wavethe dev[atlon of the metric tensor from the identity is simply
lengths much longer than the facets or ridges of the crumplewe strain tensor
structure. These long-wavelength waves might show distinc- 5 1 1)
tive and subtle features, yet we shall not treat them in the Yap= Oap™ Yap-

present paper. These waves are not expected 10 depeRfle sym of the eigenvalues of the strain tensor is(22)

heavily on the distinctive facet-and-ridge structure Ofexpansion factor and their difference is the shear afgjle

crumpleg :Tlheets._d . h | . he eigenvalues of the curvature tensor are simply the in-
We shall consider instead the complementary regime Ofig a5 of the two principal radii of curvature of the surface.

higher frequencies having wavelengths smaller than the typi- o~

cal facets of the sheet. Several behaviors might be expectéhwe _take a pplntr(xl,xz), Whe_zrexl,xz refe.r to the(2D)

as compared to the uniform sheet. On one hand, the elast[gate”al coo_rdmates of the point, the metric and curvature
tension induced by the ridges might enhance the propagatio nsor are given bj]

along the network of ridges. On the other hand, the contrast-

ing nature of the ridges and the facets might serve as a bar- Jap=(dal) - (9gr), @)
rier for propagation out of or into a facet. It is these phenom- R R
ena that we address below. Cop=n-(d,0dg"), 3
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whered, denotes differentiation with respect to the materialand in-plane modes decougl#. Our simulation results also
coordinatex,,, andn is the unit normal to the surface at that indicate that for small perturbations the generated modes are

point. We now consider the forces and torques in the systerfimarily transverse and the fraction of energy in the in-
necessary for mechanical equilibrium. They are given by th@lane modes is orders of magnitude smaller. The transverse

stress tensow,z and the torque tensovl ;. These are re-  Perturbationu(x,y) leads to a change in the total energy of
lated to the deformation tensorg,; and C,g, for suffi- the sheet of ordee?. The O(€) term should vanish because

ciently small strains by3] ro(X,y) is the equilibrium configuration. Using Eq11)
along with the defining Eqg1)—(5) and Eq.(10) yields the
Yh O(€?) change in energy
a-aﬁzl_—vz[’YQB_l— Veapeﬁfr’yPT]’ (4)

SE= lf dxdyl «{[ (Ugx—u(C% )%+ uy,—u(C2)?1%}
MaB:K[Ca,B+ VeapeﬁTCpT]7 (5) 2 XX xx yy vy
whereY is Young's modulusy is the Poisson ratio, and +2k(1= v)uZ,+ 2K Uy — U(C) % ][ Uyy—u(CY)?]
=Yh%12(1-v?) is the bending modulus of the elastic ma-

terial. Hereh is the thickness of the sheet,; is the two- Y 2. 202 2 202
dimensional antisymmetric tensor. Summation over repeated + 1— Vz(yxx{ux+u (Cood ™+ 2Luy+u(Cyy) I}
indices is implied. The conditions that guarantee that the

strain and curvature tensors describe a physical surface in  + 9 fu?+u?(CJ) %+ v[uZ+u?(CQ,)2]}
equilibrium are called the von Karman equatid&g. The
von Karman equations may be put in a form more suitable
for our purposes as follows]:

+U[(CRY?+(Cy,)2+21CY,C 1) (12)

where CSX,CSyﬂSxaySy are simply the respective compo-

3405M op= 5Cap (7)  nents of the curvature and strain tensor in the equilibrium
state.u, is the derivative ofu with respect to the material
The first equation is simply a restatement of Gauss’ theoremoordinatea. The O(€) term is simply the stress von Kar-
that helps in making sure that the curvature and metric tensanan equation and hence vanishes as argued above. Cross
describe a physical surface. The second von Kar@so terms involving ng and ygy are absent because we have
called the stress von Karmaequation is a condition for chosen our axes to be aligned with the principal axes of the
physical equilibrium of the sheet. Finally, we need expres-curvature and strain tensor. Here, we restrict ourselves to the
sions for the elastic energy stored in the sheet. The stretchingase where the principal axes of the curvature and strain
energy is given by6] tensor are the same. This is true along the middle of the ridge
[10]. The general expression is more complex but this is
®) sufficient for our purposes. We now considgE to be an
effective potential for the fieldi(x,y),

detCaB:aaaﬁ'}/a'B_var 7,13, (6)

1
ESZEJ dXdyUaB’)/aﬁ
and the bending energy by V=65E. (13

Eb:%J dxdy MysCap- 9) We can then define a kinetic-energy term

1
Thus, the total elastic energy of the sheet is given by T= Ef dxdyph u?, (14)
1 . . . B .
Emt:_f AXAY 0 g Yapt M asCusl- (10) wherep is the depsﬂy of the materlal anq_= é’u/'ﬁt. This
2 leads to an effective Langrangian for the field given by

lll. THE WAVE EQUATION L=T-V (15

Let the equilibrium configuration of the sheet be given by The Euler-Lagrange equations for this system are then given

ro(X,y). This implies thatro(x,y) satisfies the von Karman bBY
equations. To study tranverse waves we consider small dis- L L L

placements normal to the surface everywhere. . +9.9

— ,——=0. (16)
au  Hou, HMau,,

F(X,y)=ro(X,y)+eu(x,y)n, (1) ,
The last term arises because of the presence of second de-

whereu(x,y) is a smooth function of the material coordi- rivatives of the field in the potentidB]. Using Eqgs.(12)—
natesx,y. Considering only transverse waves is justified(15) in Eq. (16) gives us the local wave equation satisfied by
since it is known that in the thin limitH<1) the transverse the fieldu(x,y),
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—ph uy=kVu—Au,—Ayuy,+Bu (17)  where

where a=£, 29
ph
Yh 0 0
vz(')’xx+ V'yyy) (18

A=2k(CP)%+2kv(CJ )+

1
b= p—h[ZKC)Z(X—F 2KVC§y+I’(’yXX+ V’}’yy)], (24)

and similarly forA, . The coefficient of the last term is given
by

B=k(C2)*+ k(Ch)*+2kp(CH)A(CY )2+ {5 [(CD)?
+u(C)2T+ YL (C)2+ »(CRY?T}
+2rvC,,C

]1
+1[(CRY?+(Cy,)2+2vCo,CY ], (19 v
B 5 ) _ wherer=YW(1-1?) as before. Considering a wave travel-
wherer =Y/ (1-»). Itis to be noted that all these coeffi- |ing iy the perpendicular direction yields the same equation
cients are local, in that they depend on the curvature an@xcept with ax andy interchange in the coefficiert. We

strain at the point,y) in the material coordinates. We now 6,y consider the leading-order behavior of the above coef-
consider some limiting cases to understand the origin of thgcients in the limit of very small thickneds<1, whereh is

various terms in Eq(17). First, we consider the case where measured in units of the ridge size. For this case the scaling
we simply have a flat sheet with no curvature or strain. Hergyt the midridge curvature and strain with thickness have

_ L ct C? C2.+rC2 +xC2
c= ph[K xx T T YxCx T T yyyCixtrCit & yy

+2kvCECo T vy Coy+ 19y, Co+1Coy

(25

Ax, Ay, andB are identically zero, giving us been worked out by Witten and co-workel8,10,6. We
— ph ug= KV, (20 have the following results for
. . . . Cyx~h 13 (26)
which correctly describes bending waves on a sheet with
thicknessh, bending modulus, and densityp [3]. Now we C. <C 27)
consider the case where we have a flat sheet with no curva- yy oo
ture, k=0, and with some isotropic straip. Equation(17) Y~ h?3 (28)
then reduces to > '
23
i Yhsz » Yyy~ = (29
PR U=,V 2Y) Using these scaling laws along with the dispersion rela-

tion obtained above gives us the scaling behavior of the dis-
which describes a stretched membrane under tension propgsersion curve
tional to Yy. The leading-order behavior of the last term in
Eq. (17) will be discussed in the following section. aoh?k*+bgh?3%2+ coh~23= w?, (30)

whereag,bg,cq are positive real numbers independentof

Itis also to be noted that we would get the same form for the
A crumpled sheet consists of two distinct regions, thedispersion in the perpendicular direction of propagation. The

ridges and the flat facets that are bounded by ridges. Thexplicit form of the leading-order term in the coefficienis

ridges are regions of large curvature and strain and most of

the elastic energy of the sheet is stored &k The flat Y 72

facets on the other hand have small curvature and strain from c= mR ' (3D

the ridges pulling on therfil0Q]. In this section, we look at P

the dispersion relations for tranverse waves in the two reg —_~-1

gions. whereR=C,

IV. DISPERSION RELATIONS

is the transverse radius of curvature of the
ridge. This is significant because the above expression is the
square of the “ringing frequency” of a cylinder of radil

A. Ridges which is the frequency of purely radial oscillations of the

We take the material coordinateo lie along the width of cyIinder[?].'Thus, the last term in the disp'ersion represents

the ridge andy to lie along its length. We assume that the the “breathing mode” of the rldgg. Equatiof80) tells us

ridge is a region with uniform curvature and strain given bythat, for large wave numbers$h~2%), the first term domi-

the values that they take at the midpoint. To obtain the dishates leading to pure bending wave behavior. This is reason-

persion re'ations’ we consider a p|ane Waue,,ei(kxfwt), able, since for small WaVeIengtI(lSr Iargek) the surface is
traversing the width of the ridge. Substituting this ansatz intdocally flat and hence we expect behavior similar to bending
Eq. (17) yields waves on a flat sheet. In the long-wavelength regirke (
<h™?"), the constant term dominates leading to breathing
ak*+bk?+c=w?, (220 modes of the ridge. This also prescribes a lower cutoff fre-
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sl 4 FIG. 1. Dispersion curves for the ridgéop
h-28 curve and facet(bottom curvé regions forh
=0.01. Coefficients independent df (ag,bg,

2F h~'? | 7 etc) have been set to 1. Logarithms are to the

o

2, »_/_’// base ten. The lowek cutoff for the ridge region
g .

-

is the inverse of the ridge widtha("*~h=%3),
The lower cutoff for the facet region is the in-
verse of the ridge length, which we take as unity.
Above k~h~2" bending modes dominate in the
ridge and modes in the facet can exist in the ridge
too.

-1}

0 02 04 06 0.8 1 1.2 1.4 16 18 2
Log k
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guency for modes in the ridge. Therenis regime where the modes we are looking at, then there will be an associated
second term describing sound modes dominates. Thus, tiekin depth. This needs to be compared to the width of the
crossover leads directly from the bending wave regime to theidge to see if these modes are trapped in the facet. Consider
breathing mode regime. a mode of frequency,. In the ridge region, we have
- 2
B. Facets agh?k*+ boh?32+ coh™2P= w§, (35

The facets have some residual strain and curvature due tehereay,bg,c, are just real, positive numbers independent
the ridges. Following the treatment of Lobkovsky and Wittenof h. We consider the case whets, is just less than the
[10], we have the following scaling relations for the curva- cutoff frequency. Thus, we take
ture and strain away from the ridge:

2__ —2/3
—doh~23, 36)
C~h13 (32 o0
where dg<cq. Using this we may now solve fdk in the
y~h*3, (33 ridge region. The solution is
Using these scaling laws, we follow the same procedure as in —bo+[b§—4ag(co—do) ]2 .
the preceding section to obtain the scaling form of the dis- k= a h=== (37
persion relation 0
The requiremently<c, ensures thak has a nonzero imagi-
21,4 4/3),2 213_ 2
a1h?k*+b;h*%+ c;h*°= w?. (34 nary part. Thus, the imaginary part kfscales a2 and

. - . hence the skin depth
Again, we see two distinct regimes. For small wavelengths

(k=h"13), we have pure bending waves and for large wave- ~[Im(k)]~1~h?3, (39
lengths k<h~'3), we have breathing modes. Figure 1

shows the dispersion curves for both the ridges and facetThe width of the ridgev, however, scales as"® [6]. Thus,
We notice that there are modes that exist on the facets whosee find that

frequencies are too low to propagate in the ridges. This

prompts the question as to whether these modes can tunnel I<<w. (39

through the ridges to the other facets. o ) .
This implies that the modes we considered ought to remain

trapped in the facet for sufficiently thin sheets. In the follow-

ing section, we examine the predicted scaling behavior and
To address the question of whether the above-mentioneghe trapping phenomenon numerically.

modes are able to penetrate the ridges we look at the skin

depth of these modes in the ridge region. For a particular V. SIMULATIONS

mode, the frequency is the same in both regirecause of

matching at the interfagelf the frequency is less than the =~ We model the elastic sheet as a triangular lattice of

cutoff frequency in the ridge region, as is the case with thesprings of unstretched leng#hand spring constari follow-

C. Skin depth
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FIG. 2. Tetrahedron on the left
has facets marked, B, C, and
B D. Facet D is hidden. Cutting
along the edges adjacent to the
dotted lines yields the flat triangu-
A lar sheet on the right. Regions
markedA, B, C, andD are to be
identified with the corresponding
facets on the tetrahedron.

CUT

FOLD AND PASTE

ing Seung and Nelsofl1]. We incorporate bending rigidity zation routine we get the tetrahedron close to its equilibrium
by assigning an energy(1—n;-n,) to every pair of adja- Position. We then add in damping and a small perturba@on
cent lattice triangles(plaquets with normals i, and n,.  [@P on one of the facetsand then wait for the system to
Sueng and Nelson showed that when the strains are smaAftain a state of equmb_num. Once equilibrium is attayned we
and the radii of curvature are large compared to the lattic ow remove t_he damping and perturb the sy;(gipplng a
constant, this model membrane bends and stretches like an"’ lattice pomts at the center of a fapet by giving the three
elastic sheet of thickness=a\8J/K with Young's modulus central particles of the facet equal initial velocities normal to

v =2Ka/hy/3 and Poisson ratio=1/3. The bending modu- the surfacg so as to generate waves and study their propa-

. ) . ation. To measure the energy being carried by the waves,
lus is k=J/3/2. This model has been extensively used tog 9y g y

X ) ) _ we first define an energy that measures the deviation from

study the static scaling properties of ridgés10,13. We use P 9y
N . ; the equilibrium state
it in this paper to study the dynamics of wave propagation by
adding a unit mass to every lattice point. This models the 1
kinetic term in our Lagrangian and assigns to the sheet, ag, - EK(Xi_XiO)z_"Z 2J[sin( 6,/2) — sin( 62/2) 12
mass per unit area.

To produce connected ridges and facets we construct a 1
very simple shape, namely the regular tetrahedron, by join- +2 _vi2, (40)
ing the edges of a triangular sh¢ét. Figure 2 illustrates the 2
relation between the flat sheet and tetrahedron. Here, we use
the argumenf13] that most of the energy and stresses in thewherex;’s refer to the positions of the point unit massess
crumpled sheet are localized in the ridges and hence are supplements of the angles between pairs of plaquets, and
crumpled sheet may essentially be viewed as a collection af;'s are velocities of the masses. The superscripted variables
nearly flat facets bound by a network of straight ridges. Arefer to the equilibrium values. After an initial drop (3
tetrahedron, by virtue of having connected ridges and facets; 4 %) this energy is conserved up to 1% of its value and
captures the essential features of a crumpled sheet and hertwence is a reasonably reliable indicator of the energy associ-
motivates our choice. By using a conjugate gradient minimi-ated with deviations.

1

FIG. 3. Normalized energy of the perturbed

e facet as a function of timén seconds E,, stands
|.|.|Q for the deviation energy of the perturbed facet.
ng E.o: is the total deviation energy of the tetrahe-

dron. Curves are for values of impulse 0.01
(+), 0.001 (*), and 0.3 (0). Notehat the first
two are below the threshol®.1) and the last one
is above.
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12
10' -
.._'O
[
£ FIG. 4. Log-log plot of onset time§n sec-
3 ondg as a function of thicknesén metre$ for
g different p. Circles (0=0.9), pluses (=0.85),
; asterisks p=0.92). The lines are best fit to the
data points. Slopes of the liné®p to bottom are
—1.55, —1.48, and—1.41, respectively.
Qo
5 *
0.35 0.45 0.55 0.65

Thickness h

For large initial perturbations we may also expect the ini-pulses less than the threshold superimpose. Thus imparting
tiation of in-plane waves. To avoid these waves we first esan initial impulse less than the threshold gives us robust,
timate what initial impulse causes a normal displacemengharacteristic curves that are independent of the actual value
comparable to the lattice spacing, by assuming that the erf the impulse. From here on we consider only simulations
ergy of the impulse is transferred to stretching and bendingvhere the impulse is less than the threshold. Looking at the
energy in the region of the tap. For typical values=(1,K Stretching qnd bend_mg_ene_rgles in this regime also tells us
=1,J=0.05) we obtain the limiting value of the initial im- that stretching contribution is small and hence the modes are
pulse to be 0.1. For the sake of consistency and to avoiqlostly transverse. We also check this fact by looking explic-
confusion we take the variables to have their values in Sl Iyl\?(gvt/hsvgacrgglseidrgro?ﬁg.time dependence of the enerav of
units (energy in Joules, time in seconds, Jefeéigure 3 shows the perturbed facet. Typical curvgs are like those in F?g 3
the deviation energyHy,,) of the perturbed facesay facet

C : e with initial impulse less than the threshold. For an initial
Ain Fig. 2) normalized by the total deviation energy of the jerya| the energy remains close to 1. It then begins to drop

tetrahedron for different initial impulses both greater and lesgyf and we see a straight line segment to the curve. The
than the limiting value. The simulation was done with theinitial interval simply indicates the time it takes the fastest

above-mentioned parameter values for a tetrahedron of siz@ode to reach the edge of the facet. The straight line seg-
10a. We notice that the curves corresponding to initial im-ment on the other hand is presumably where all modes are

0.3

02

£
g 3 FIG. 5. Log-log plot of slopem (in s™%) as a
o function of thickness(in metre$. The line is a
best fit to the data points.
Q
0.13
04 045 0.55 0.65
Thickness h
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09

071

FIG. 6. Normalized energy of the perturbed
facet as a function of timén seconds E,, stands
for the deviation energy of the perturbed facet.
Eot is the total deviation energy. Solid line—
tetrahedron. Dashed line—flat sheet.

Ep/ Eiot

051

03

0.2

0.1

contributing giving us a constant energy flux out of the facetbe proportional to the inverse of the largest group velocity.
and hence a constant slope in the energy versus time graphrom Fig. 1, we see that the fastest modes should be pre-
To measure these two quantities, we first define an onsetominantly bending modes. Hence we expect
time t, where the energy begins leaking out to the other
facets. We take this as the time for the energy of the per- do
turbed facet to drop to a fractiop~0.9. We choose 0.9 to~[m}
because it is close enough to 1 so as to justify the name onset
time but still far enough from 1 to get a good spread of data.
We now wish to study how this onset time scales with theFigure 4 shows a plot of the onset times for various thick-
thickness of the sheet. We obtain data for different thick-nesses and for different valuesmfBest fit lines for slightly
nesses by running the simulation with the paramatgept  different values ofp are fairly parallel and hence the exact
fixed and changing,K such that the Young’'s modulus re- choice ofp does not affect the power law crucially. From the
mains constant while the bending modulus obaysh3.  graph we deduce a power law ¢f~h~148=097 which
Note that since the unit masses are not changed the densiigrees very well with the theory. The error quoted is the
per unit area gh) remains constant. The onset time shouldvariation of the slope witlp.

1
~(\Jklph) t~h=32, (41)

1
09
08
071

o8 FIG. 7. Normalized energy of a section of the

perturbed facet as a function of tini@ seconds

E, stands for the deviation energy of the subsec-
tion of the perturbed faceE,,; is the total devia-
tion energy. Solid line—tetrahedron. Dashed
line—flat sheet.

05

Ep/ ot

041

03[

021
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FIG. 8. Time sequence of energy density profiles for the tetrahgtkfihand flat sheetright). For purposes of display the lattice points
of the tetrahedron have been mapped to their undeformed triangular state. Arrows mark the vertices of the perturbed facet of the tetrahedron
and the same region on the flat sheet for comparison. The brightest regions in each snapshot represent the regions of highest energy densit)
in that snapshot.
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2 4 6 8 10

FIG. 8. (Continued.

The scaling derived above does not reflect the presence abnsider the portion of the curve that shows the energy leav-
ridges. The onset time is a characteristic of the velocity ofing the facet. As mentioned before there is a straight line
propagation in the facet and we would get an identical scalsegment to this curve where we may assume all modes are
ing law for a flat sheet. To identify the effects of the ridge wecontributing. We denote the slope of this line segmentnas
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and study how this quantity varies with thickness. We alsaest energy density. The tetrahedron has been folded out and
expect that if the slopeém) are dominated by the bending hence the central triangular face, marked at the vertices by
wave contribution then arrows, is the perturbed face. Ridges form the sides of this
face. Arrows in the flat sheet sequence simply help to iden-
tify the corresponding region in the flat sheet. Note that the
initial excitation is confined to the central three particles. We
see that in the flat sheet case, the energy simply spreads
Figure 5 shows a log-log plot of slopm as a function of outwards. In the tetrahedral case though, we notice reflec-
thickness. The slope of the best fit line yields the power lawtions (t=6.5tot=9) and also the preferential propagation
m~h*46-01 Again this is exactly what we expect for a flat of energy through the middle of the ridgels<(15.5). Thus,
sheet. This could imply that the ridges do not affect any ofwe see the qualitative effects predicted by our analysis. How-
the characteristics of wave propagation. ever, we never see the complete trapping of energy. This
To see if this really is the case, we explicitly comparecould be due to the limited size of the simulation as well as

normalized energy versus time curves obtained for a tetrahehe difficulty in producing wavelengths in the right regime.
dron and a flat sheet under appropriate strain in Fig. 6. We

get the curve for the flat sheet by using a flat triangular sheet
obtained by unfolding the tetrahedr¢see Fig. 2 The sheet
is thus divided into four equal “facets” with the central one  In this paper we have taken the first step toward under-
being perturbed. The sheet is put under strain by stretchingtanding the dynamics of crumpled elastic sheets. We find
the edges slightly and then clamping them. The magnitude ahat the ridge structures in crumpled sheets qualitatively
strain is set to be equal to that in the facets of the tetrahedromodify the propagation of transverse waves. Despite the
The curves show the normalized energy of the same pestress induced by the ridges, our analysis indicates that the
turbed facet in the tetrahedral and flat geometry. From Fig. 6stretched string or drumhead modes normally associated with
we can draw one main conclusion. The rate at which energg stretched membrane are not important in a crumpled sheet.
leaves the facet seems appreciably less in the case of ti@ur analysis suggested that the ridges would act as barriers
tetrahedron. to propagation and also that there could be modes that are

We can imagine three possible scenarios that inhibit therapped in the facets. These modes are unable to penetrate
flow of energy from the perturbed facet. First, significantthe ridges because the associated skin depth is much less
reflections may occur at the ridge thus confining energy tahan the ridge width in the thin limit. Our numerical simula-
the perturbed facet. Second, the energy may preferentialljons gave us qualitative evidence that the above picture was
propagate through the centers of the ridges where the curvaight. Corresponding trapping phenomena should occur
ture is least, i.e., the large curvatures close to the verticewhenever a real crumpled sheet is vibrated. This means that
may inhibit propagation. Third, the energy may simply crumpled sheets inhibit propagation of vibrational waves
propagate preferentially along the ridge and not into thehrough the material. The present line of analysis suggests a
neighboring facet. The first two mechanisms follow qualita-way to treat this type of trapping phenomenon. One main
tively from our analytical treatment while the third would application of our work, therefore, would be to see if this
invalidate our analysis. To check for the possibility of reflec-trapping of energy can be observed experimentally in the
tions we look at the energy of smaller triangular section laboratory. Future work could focus on subjecting our pre-
within our perturbed facet. Figure 7 shows the comparisortictions to a more thorough simulation analysis that could
between the tetrahedral case and the flat sheet case. We igupport our findings in a more quantitative fashion as well as
mediately notice a bump in the curve for the tetrahedroridentify the trapping of modes in the right frequency regime.
indicating that energy flows back in, suggesting the occurit would also be interesting to extend the analysis to cover
rence of reflections. Thus, the presence of ridges does indegide low frequency regime.
seem to result in reflections.
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