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Trapping of vibrational energy in crumpled sheets
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We investigate the propagation of transverse elastic waves in crumpled media. We set up the wave equation
for transverse waves on a generic curved, strained surface via a Langrangian formalism and use this to study
the scaling behavior of the dispersion curves near the ridges and on the flat facets. This analysis suggests that
ridges act as barriers to wave propagation and that modes in a certain frequency regime could be trapped in the
facets. A simulation study of the wave propagation qualitatively supported our analysis and showed interesting
effects of the ridges on wave propagation.

DOI: 10.1103/PhysRevE.65.036613 PACS number~s!: 03.50.2z, 46.40.2f, 68.55.Jk
at
e

th
l

i
ie

lin
id
e
e

fa
r
ti
ra

ci
re
om
ra
re
ve
le

in
th
pe
o

o
yp
ct
as
ti
as
b
m

e
rive
ved,
IV
in

et.
rgy
we
are
he
in

hin
e

the

s-
or

that
ly

in-
e.

ure
I. INTRODUCTION

Waves show distinctive behavior when they propag
through media that are strongly heterogeneous. Among th
behaviors are localization@1#, multiple propagation paths
and lensing@2#. These phenomena depend strongly on
type of wave ~electromagnetic, Schroedinger, vibrationa!
and the type of heterogeneity.

We treat a type of heterogeneity that arises naturally
materials, but whose effect on waves has not been stud
crumpled membranes. The disorder introduced by crump
is much different from the random disorder usually cons
ered. Instead of a structureless disorder, crumpled sh
consist of uniform, flat facets bordered by strongly curv
and stretched borders called elastic ridges@9,10#. Vibrational
waves are expected to propagate much differently in the
ets and in the border regions. Crumpled sheets of newsp
paper are commonly used as an insulating and protec
enclosure, but we know of no characterization of their vib
tional isolation or transmissions properties.

We anticipate various possible effects. We imagine os
lating a point on the membrane and investigating the
sponse as a function of distance from this source as c
pared with a flat, uniform sheet. First, there are two natu
regimes of vibrational frequency to be considered. Low f
quencies are expected to produce vibrations with wa
lengths much longer than the facets or ridges of the crump
structure. These long-wavelength waves might show dist
tive and subtle features, yet we shall not treat them in
present paper. These waves are not expected to de
heavily on the distinctive facet-and-ridge structure
crumpled sheets.

We shall consider instead the complementary regime
higher frequencies having wavelengths smaller than the t
cal facets of the sheet. Several behaviors might be expe
as compared to the uniform sheet. On one hand, the el
tension induced by the ridges might enhance the propaga
along the network of ridges. On the other hand, the contr
ing nature of the ridges and the facets might serve as a
rier for propagation out of or into a facet. It is these pheno
ena that we address below.
1063-651X/2002/65~3!/036613~11!/$20.00 65 0366
e
se

e

n
d:
g
-
ets
d

c-
int
ve
-

l-
-
-
l
-
-
d

c-
e
nd

f

f
i-
ed
tic
on
t-

ar-
-

In Sec. II, we briefly review classical thin membran
theory and gather the results we need. In Sec. III, we de
the wave equations for transverse waves on a generic cur
strained surface from a Langrangian formulation. Section
is devoted to studying the form of the dispersion relations
the two distinct regions~ridges and facets! and also the scal-
ing behavior of the dispersions with thickness of the she
This analysis first suggests the possibility of trapped ene
in the facets with ridges serving as barriers. In Sec. V,
discuss in detail the simulations we performed and comp
them to our analytical predictions. Finally, we discuss t
implications of our work and the scope for future work
Sec. VI.

II. THIN MEMBRANE THEORY

Our findings are based on the classical theory of t
membranes@3#. If the thickness is small then we may assum
that all variables may be integrated over the thickness of
membrane and it can be regarded as a two-dimensional~2D!
surface@3#. To define a surface uniquely up to overall tran
lations and rotations it is sufficient to specify a metric tens
gab and a curvature tensorCab satisfying Gauss’sTheorema
Egregiumand the Codazzi-Mainardi equations@4#. To see
the physical significance of these tensors we first note
the deviation of the metric tensor from the identity is simp
the strain tensor

gab5dab1gab . ~1!

The sum of the eigenvalues of the strain tensor is the~2D!
expansion factor and their difference is the shear angle@3#.
The eigenvalues of the curvature tensor are simply the
verses of the two principal radii of curvature of the surfac
If we take a pointrW(x1 ,x2), wherex1 ,x2 refer to the~2D!
material coordinates of the point, the metric and curvat
tensor are given by@4#

gab5~]arW !•~]brW !, ~2!

Cab5n̂•~]a]brW !, ~3!
©2002 The American Physical Society13-1
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where]a denotes differentiation with respect to the mater
coordinatexa , andn̂ is the unit normal to the surface at th
point. We now consider the forces and torques in the sys
necessary for mechanical equilibrium. They are given by
stress tensorsab and the torque tensorMab . These are re-
lated to the deformation tensorsgab and Cab , for suffi-
ciently small strains by@3#

sab5
Yh

12n2
@gab1nearebtgrt#, ~4!

Mab5k@Cab1nearebtCrt#, ~5!

whereY is Young’s modulus,n is the Poisson ratio, andk
5Yh3/12(12n2) is the bending modulus of the elastic m
terial. Hereh is the thickness of the sheet.eab is the two-
dimensional antisymmetric tensor. Summation over repea
indices is implied. The conditions that guarantee that
strain and curvature tensors describe a physical surfac
equilibrium are called the von Karman equations@5#. The
von Karman equations may be put in a form more suita
for our purposes as follows@6#:

detCab5]a]bgab2¹2 Tr gab , ~6!

]a]bMab5sabCab . ~7!

The first equation is simply a restatement of Gauss’ theo
that helps in making sure that the curvature and metric ten
describe a physical surface. The second von Karman~also
called the stress von Karman! equation is a condition for
physical equilibrium of the sheet. Finally, we need expr
sions for the elastic energy stored in the sheet. The stretc
energy is given by@6#

Es5
1

2E dxdysabgab ~8!

and the bending energy by

Eb5
1

2E dxdy MabCab . ~9!

Thus, the total elastic energy of the sheet is given by

Etot5
1

2E dxdy@sabgab1MabCab#. ~10!

III. THE WAVE EQUATION

Let the equilibrium configuration of the sheet be given
rW0(x,y). This implies thatrW0(x,y) satisfies the von Karman
equations. To study tranverse waves we consider small
placements normal to the surface everywhere.

rW~x,y!5rW0~x,y!1eu~x,y!n̂, ~11!

whereu(x,y) is a smooth function of the material coord
nates x,y. Considering only transverse waves is justifi
since it is known that in the thin limit (h!1) the transverse
03661
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and in-plane modes decouple@7#. Our simulation results also
indicate that for small perturbations the generated modes
primarily transverse and the fraction of energy in the
plane modes is orders of magnitude smaller. The transv
perturbationu(x,y) leads to a change in the total energy
the sheet of ordere2. TheO(e) term should vanish becaus
rW0(x,y) is the equilibrium configuration. Using Eq.~11!
along with the defining Eqs.~1!–~5! and Eq.~10! yields the
O(e2) change in energy

dE5
1

2E dxdyFk$@~uxx2u~Cxx
0 !2#21@uyy2u~Cyy

0 !2#2%

12k~12n!uxy
2 12kn@uxx2u~Cxx

0 !2#@uyy2u~Cyy
0 !2#

1
hY

12n2
„gxx

0 $ux
21u2~Cxx

0 !21n@uy
21u2~Cyy

0 !2#%

1gyy
0 $uy

21u2~Cyy
0 !21n@ux

21u2~Cxx
0 !2#%

1u2@~Cxx
0 !21~Cyy

0 !212nCxx
0 Cyy

0 #…G ~12!

where Cxx
0 ,Cyy

0 ,gxx
0 ,gyy

0 are simply the respective compo
nents of the curvature and strain tensor in the equilibri
state.ua is the derivative ofu with respect to the materia
coordinatea. The O(e) term is simply the stress von Kar
man equation and hence vanishes as argued above. C
terms involvingCxy

0 and gxy
0 are absent because we ha

chosen our axes to be aligned with the principal axes of
curvature and strain tensor. Here, we restrict ourselves to
case where the principal axes of the curvature and st
tensor are the same. This is true along the middle of the ri
@10#. The general expression is more complex but this
sufficient for our purposes. We now considerdE to be an
effective potential for the fieldu(x,y),

V5dE. ~13!

We can then define a kinetic-energy term

T5
1

2E dxdyrh ut
2 , ~14!

wherer is the density of the material andut[]u/]t. This
leads to an effective Langrangian for the field given by

L5T2V ~15!

The Euler-Lagrange equations for this system are then g
by

]L

]u
2]m

]L

]um
1]m]n

]L

]umn
50. ~16!

The last term arises because of the presence of second
rivatives of the field in the potential@8#. Using Eqs.~12!–
~15! in Eq. ~16! gives us the local wave equation satisfied
the fieldu(x,y),
3-2
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TRAPPING OF VIBRATIONAL ENERGY IN CRUMPLED SHEETS PHYSICAL REVIEW E65 036613
2rh utt5k¹4u2Axuxx2Ayuyy1Bu ~17!

where

Ax52k~Cxx
0 !212kn~Cyy

0 !21
Yh

12n2
~gxx

0 1ngyy
0 ! ~18!

and similarly forAy . The coefficient of the last term is give
by

B5k~Cxx
0 !41k~Cyy

0 !412kn~Cxx
0 !2~Cyy

0 !21r $gxx
0 @~Cxx

0 !2

1n~Cyy
0 !2#1gyy

0 @~Cyy
0 !21n~Cxx

0 !2#%

1r @~Cxx
0 !21~Cyy

0 !212nCxx
0 Cyy

0 #, ~19!

wherer[Yh/(12n2). It is to be noted that all these coeffi
cients are local, in that they depend on the curvature
strain at the point (x,y) in the material coordinates. We no
consider some limiting cases to understand the origin of
various terms in Eq.~17!. First, we consider the case whe
we simply have a flat sheet with no curvature or strain. H
Ax , Ay , andB are identically zero, giving us

2rh utt5k¹4u, ~20!

which correctly describes bending waves on a sheet w
thicknessh, bending modulusk, and densityr @3#. Now we
consider the case where we have a flat sheet with no cu
ture, k50, and with some isotropic straing. Equation~17!
then reduces to

2rh utt5
Yhg

12n
¹2u, ~21!

which describes a stretched membrane under tension pro
tional to Yg. The leading-order behavior of the last term
Eq. ~17! will be discussed in the following section.

IV. DISPERSION RELATIONS

A crumpled sheet consists of two distinct regions, t
ridges and the flat facets that are bounded by ridges.
ridges are regions of large curvature and strain and mos
the elastic energy of the sheet is stored here@9#. The flat
facets on the other hand have small curvature and strain f
the ridges pulling on them@10#. In this section, we look a
the dispersion relations for tranverse waves in the two
gions.

A. Ridges

We take the material coordinatex to lie along the width of
the ridge andy to lie along its length. We assume that th
ridge is a region with uniform curvature and strain given
the values that they take at the midpoint. To obtain the d
persion relations, we consider a plane wave,u;ei (kx2vt),
traversing the width of the ridge. Substituting this ansatz i
Eq. ~17! yields

ak41bk21c5v2, ~22!
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a5
k

rh
, ~23!

b5
1

rh
@2kCxx

2 12knCyy
2 1r ~gxx1ngyy!#, ~24!

c5
1

rh
@kCxx

4 1rgxxCxx
2 1rngyyCxx

2 1rCxx
2 1kCyy

4

12knCxx
2 Cyy

2 1rngxxCyy
2 1rgyyCyy

2 1rCyy
2

12rnCxxCyy#, ~25!

wherer[Yh/(12n2) as before. Considering a wave trave
ling in the perpendicular direction yields the same equat
except with ax and y interchange in the coefficientb. We
now consider the leading-order behavior of the above co
ficients in the limit of very small thicknessh!1, whereh is
measured in units of the ridge size. For this case the sca
of the midridge curvature and strain with thickness ha
been worked out by Witten and co-workers@9,10,6#. We
have the following results for

Cxx;h21/3, ~26!

Cyy!Cxx , ~27!

gxx;h2/3, ~28!

gyy;h2/3. ~29!

Using these scaling laws along with the dispersion re
tion obtained above gives us the scaling behavior of the
persion curve

a0h2k41b0h2/3k21c0h22/35v2, ~30!

wherea0 ,b0 ,c0 are positive real numbers independent ofh.
It is also to be noted that we would get the same form for
dispersion in the perpendicular direction of propagation. T
explicit form of the leading-order term in the coefficientc is

c5
Y

r~12n2!
R22, ~31!

whereR5Cxx
21 is the transverse radius of curvature of t

ridge. This is significant because the above expression is
square of the ‘‘ringing frequency’’ of a cylinder of radiusR,
which is the frequency of purely radial oscillations of th
cylinder @7#. Thus, the last term in the dispersion represe
the ‘‘breathing mode’’ of the ridge. Equation~30! tells us
that, for large wave numbers (k@h22/3), the first term domi-
nates leading to pure bending wave behavior. This is reas
able, since for small wavelengths~or largek) the surface is
locally flat and hence we expect behavior similar to bend
waves on a flat sheet. In the long-wavelength regimek
!h22/3), the constant term dominates leading to breath
modes of the ridge. This also prescribes a lower cutoff f
3-3
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FIG. 1. Dispersion curves for the ridge~top
curve! and facet~bottom curve! regions for h
50.01. Coefficients independent ofh (a0 ,b0,
etc.! have been set to 1. Logarithms are to t
base ten. The lowerk cutoff for the ridge region
is the inverse of the ridge width (w21;h21/3).
The lower cutoff for the facet region is the in
verse of the ridge length, which we take as uni
Above k'h22/3 bending modes dominate in th
ridge and modes in the facet can exist in the rid
too.
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quency for modes in the ridge. There isno regime where the
second term describing sound modes dominates. Thus
crossover leads directly from the bending wave regime to
breathing mode regime.

B. Facets

The facets have some residual strain and curvature du
the ridges. Following the treatment of Lobkovsky and Witt
@10#, we have the following scaling relations for the curv
ture and strain away from the ridge:

C;h1/3, ~32!

g;h4/3. ~33!

Using these scaling laws, we follow the same procedure a
the preceding section to obtain the scaling form of the d
persion relation

a1h2k41b1h4/3k21c1h2/35v2. ~34!

Again, we see two distinct regimes. For small waveleng
(k@h21/3), we have pure bending waves and for large wa
lengths (k!h21/3), we have breathing modes. Figure
shows the dispersion curves for both the ridges and fac
We notice that there are modes that exist on the facets w
frequencies are too low to propagate in the ridges. T
prompts the question as to whether these modes can tu
through the ridges to the other facets.

C. Skin depth

To address the question of whether the above-mentio
modes are able to penetrate the ridges we look at the
depth of these modes in the ridge region. For a particu
mode, the frequency is the same in both regions~because of
matching at the interface!. If the frequency is less than th
cutoff frequency in the ridge region, as is the case with
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modes we are looking at, then there will be an associa
skin depth. This needs to be compared to the width of
ridge to see if these modes are trapped in the facet. Cons
a mode of frequencyv0. In the ridge region, we have

a0h2k41b0h2/3k21c0h22/35v0
2 , ~35!

wherea0 ,b0 ,c0 are just real, positive numbers independe
of h. We consider the case wherev0 is just less than the
cutoff frequency. Thus, we take

v0
25d0h22/3, ~36!

where d0,c0. Using this we may now solve fork in the
ridge region. The solution is

k5F2b06@b0
224a0~c02d0!#1/2

2a0
G1/2

h22/3. ~37!

The requirementd0,c0 ensures thatk has a nonzero imagi
nary part. Thus, the imaginary part ofk scales ash22/3 and
hence the skin depth

z;@ Im~k!#21;h2/3. ~38!

The width of the ridgew, however, scales ash1/3 @6#. Thus,
we find that

z!w. ~39!

This implies that the modes we considered ought to rem
trapped in the facet for sufficiently thin sheets. In the follo
ing section, we examine the predicted scaling behavior
the trapping phenomenon numerically.

V. SIMULATIONS

We model the elastic sheet as a triangular lattice
springs of unstretched lengtha and spring constantK follow-
3-4



t

e
-
s
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FIG. 2. Tetrahedron on the lef
has facets markedA, B, C, and
D. Facet D is hidden. Cutting
along the edges adjacent to th
dotted lines yields the flat triangu
lar sheet on the right. Region
markedA, B, C, andD are to be
identified with the corresponding
facets on the tetrahedron.
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ing Seung and Nelson@11#. We incorporate bending rigidity
by assigning an energyJ(12n̂1•n̂2) to every pair of adja-
cent lattice triangles~plaquets! with normals n̂1 and n̂2.
Sueng and Nelson showed that when the strains are s
and the radii of curvature are large compared to the lat
constant, this model membrane bends and stretches lik
elastic sheet of thicknessh5aA8J/K with Young’s modulus
Y52Ka/hA3 and Poisson ration51/3. The bending modu
lus is k5JA3/2. This model has been extensively used
study the static scaling properties of ridges@6,10,12#. We use
it in this paper to study the dynamics of wave propagation
adding a unit mass to every lattice point. This models
kinetic term in our Lagrangian and assigns to the shee
mass per unit area.

To produce connected ridges and facets we constru
very simple shape, namely the regular tetrahedron, by j
ing the edges of a triangular sheet@6#. Figure 2 illustrates the
relation between the flat sheet and tetrahedron. Here, we
the argument@13# that most of the energy and stresses in
crumpled sheet are localized in the ridges and henc
crumpled sheet may essentially be viewed as a collectio
nearly flat facets bound by a network of straight ridges
tetrahedron, by virtue of having connected ridges and fac
captures the essential features of a crumpled sheet and h
motivates our choice. By using a conjugate gradient mini
03661
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zation routine we get the tetrahedron close to its equilibri
position. We then add in damping and a small perturbation~a
tap on one of the facets! and then wait for the system t
attain a state of equilibrium. Once equilibrium is attained
now remove the damping and perturb the system~tapping a
few lattice points at the center of a facet by giving the thr
central particles of the facet equal initial velocities normal
the surface! so as to generate waves and study their pro
gation. To measure the energy being carried by the wa
we first define an energy that measures the deviation f
the equilibrium state

Edev5(
1

2
K~xi2xi

0!21( 2J@sin~uk/2!2sin~uk
0/2!#2

1(
1

2
v i

2 , ~40!

wherexi ’s refer to the positions of the point unit masses,u i ’s
are supplements of the angles between pairs of plaquets
v i ’s are velocities of the masses. The superscripted varia
refer to the equilibrium values. After an initial drop (
24 %) this energy is conserved up to 1% of its value a
hence is a reasonably reliable indicator of the energy ass
ated with deviations.
d

t.
e-
FIG. 3. Normalized energy of the perturbe
facet as a function of time~in seconds!. Ep stands
for the deviation energy of the perturbed face
Etot is the total deviation energy of the tetrah
dron. Curves are for values of impulse 0.01
(1), 0.001 (*), and 0.3 (o). Notethat the first
two are below the threshold~0.1! and the last one
is above.
3-5
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FIG. 4. Log-log plot of onset times~in sec-
onds! as a function of thickness~in metres! for
different p. Circles (p50.9), pluses (p50.85),
asterisks (p50.92). The lines are best fit to th
data points. Slopes of the lines~top to bottom! are
21.55, 21.48, and21.41, respectively.
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For large initial perturbations we may also expect the i
tiation of in-plane waves. To avoid these waves we first
timate what initial impulse causes a normal displacem
comparable to the lattice spacing, by assuming that the
ergy of the impulse is transferred to stretching and bend
energy in the region of the tap. For typical values (a51,K
51,J50.05) we obtain the limiting value of the initial im
pulse to be 0.1. For the sake of consistency and to av
confusion we take the variables to have their values in
units ~energy in Joules, time in seconds, etc!. Figure 3 shows
the deviation energy (Edev) of the perturbed facet~say facet
A in Fig. 2! normalized by the total deviation energy of th
tetrahedron for different initial impulses both greater and l
than the limiting value. The simulation was done with t
above-mentioned parameter values for a tetrahedron of
10a. We notice that the curves corresponding to initial im
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pulses less than the threshold superimpose. Thus impa
an initial impulse less than the threshold gives us robu
characteristic curves that are independent of the actual v
of the impulse. From here on we consider only simulatio
where the impulse is less than the threshold. Looking at
stretching and bending energies in this regime also tells
that stretching contribution is small and hence the modes
mostly transverse. We also check this fact by looking exp
itly at the particle motion.

Now we consider the time dependence of the energy
the perturbed facet. Typical curves are like those in Fig
with initial impulse less than the threshold. For an initi
interval the energy remains close to 1. It then begins to d
off and we see a straight line segment to the curve. T
initial interval simply indicates the time it takes the faste
mode to reach the edge of the facet. The straight line s
ment on the other hand is presumably where all modes
FIG. 5. Log-log plot of slopem ~in s21) as a
function of thickness~in metres!. The line is a
best fit to the data points.
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FIG. 6. Normalized energy of the perturbe
facet as a function of time~in seconds!. Ep stands
for the deviation energy of the perturbed face
Etot is the total deviation energy. Solid line—
tetrahedron. Dashed line—flat sheet.
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contributing giving us a constant energy flux out of the fa
and hence a constant slope in the energy versus time gr

To measure these two quantities, we first define an o
time t0 where the energy begins leaking out to the oth
facets. We take this as the time for the energy of the p
turbed facet to drop to a fractionp;0.9. We choose 0.9
because it is close enough to 1 so as to justify the name o
time but still far enough from 1 to get a good spread of da
We now wish to study how this onset time scales with
thickness of the sheet. We obtain data for different thi
nesses by running the simulation with the parametera kept
fixed and changingJ,K such that the Young’s modulus re
mains constant while the bending modulus obeysk;h3.
Note that since the unit masses are not changed the de
per unit area (rh) remains constant. The onset time shou
03661
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be proportional to the inverse of the largest group veloc
From Fig. 1, we see that the fastest modes should be
dominantly bending modes. Hence we expect

t0;Fdv

dkG21

;~Ak/rh!21;h23/2. ~41!

Figure 4 shows a plot of the onset times for various thic
nesses and for different values ofp. Best fit lines for slightly
different values ofp are fairly parallel and hence the exa
choice ofp does not affect the power law crucially. From th
graph we deduce a power law oft0;h21.4860.07, which
agrees very well with the theory. The error quoted is t
variation of the slope withp.
e

c-

d

FIG. 7. Normalized energy of a section of th
perturbed facet as a function of time~in seconds!.
Ep stands for the deviation energy of the subse
tion of the perturbed facet.Etot is the total devia-
tion energy. Solid line—tetrahedron. Dashe
line—flat sheet.
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FIG. 8. Time sequence of energy density profiles for the tetrahedron~left! and flat sheet~right!. For purposes of display the lattice poin
of the tetrahedron have been mapped to their undeformed triangular state. Arrows mark the vertices of the perturbed facet of the t
and the same region on the flat sheet for comparison. The brightest regions in each snapshot represent the regions of highest en
in that snapshot.
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FIG. 8. ~Continued!.
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The scaling derived above does not reflect the presenc
ridges. The onset time is a characteristic of the velocity
propagation in the facet and we would get an identical s
ing law for a flat sheet. To identify the effects of the ridge w
03661
of
f
l-

consider the portion of the curve that shows the energy le
ing the facet. As mentioned before there is a straight l
segment to this curve where we may assume all modes
contributing. We denote the slope of this line segment am
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and study how this quantity varies with thickness. We a
expect that if the slopes~m! are dominated by the bendin
wave contribution then

m;Fdv

dkG;Ak/rh;h3/2. ~42!

Figure 5 shows a log-log plot of slopem as a function of
thickness. The slope of the best fit line yields the power l
m;h1.4660.1. Again this is exactly what we expect for a fla
sheet. This could imply that the ridges do not affect any
the characteristics of wave propagation.

To see if this really is the case, we explicitly compa
normalized energy versus time curves obtained for a tetra
dron and a flat sheet under appropriate strain in Fig. 6.
get the curve for the flat sheet by using a flat triangular sh
obtained by unfolding the tetrahedron~see Fig. 2!. The sheet
is thus divided into four equal ‘‘facets’’ with the central on
being perturbed. The sheet is put under strain by stretch
the edges slightly and then clamping them. The magnitud
strain is set to be equal to that in the facets of the tetrahed
The curves show the normalized energy of the same
turbed facet in the tetrahedral and flat geometry. From Fig
we can draw one main conclusion. The rate at which ene
leaves the facet seems appreciably less in the case o
tetrahedron.

We can imagine three possible scenarios that inhibit
flow of energy from the perturbed facet. First, significa
reflections may occur at the ridge thus confining energy
the perturbed facet. Second, the energy may preferent
propagate through the centers of the ridges where the cu
ture is least, i.e., the large curvatures close to the vert
may inhibit propagation. Third, the energy may simp
propagate preferentially along the ridge and not into
neighboring facet. The first two mechanisms follow quali
tively from our analytical treatment while the third wou
invalidate our analysis. To check for the possibility of refle
tions we look at the energy of asmaller triangular section
within our perturbed facet. Figure 7 shows the comparis
between the tetrahedral case and the flat sheet case. W
mediately notice a bump in the curve for the tetrahed
indicating that energy flows back in, suggesting the occ
rence of reflections. Thus, the presence of ridges does in
seem to result in reflections.

However, to note the presence or absence of other feat
we looked explicitly at how the deviation energy is distri
uted in the terahedron as a function of time. We first pert
one of the facets to generate waves as done before. As
simulation runs, we record the deviation energy at each
tice point at each time step. We thus generate an image
every time step showing the deviation energy distributi
Figure 8 shows a sequence of snapshots of the spatial en
distribution for the tetrahedron on the left and a flat sheet
the right. The brightest regions correspond to the region
highest energy density and the darkest to regions of the l
03661
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est energy density. The tetrahedron has been folded out
hence the central triangular face, marked at the vertices
arrows, is the perturbed face. Ridges form the sides of
face. Arrows in the flat sheet sequence simply help to id
tify the corresponding region in the flat sheet. Note that
initial excitation is confined to the central three particles. W
see that in the flat sheet case, the energy simply spre
outwards. In the tetrahedral case though, we notice refl
tions (t56.5 to t59) and also the preferential propagatio
of energy through the middle of the ridges (t515.5). Thus,
we see the qualitative effects predicted by our analysis. H
ever, we never see the complete trapping of energy. T
could be due to the limited size of the simulation as well
the difficulty in producing wavelengths in the right regime

VI. CONCLUSION

In this paper we have taken the first step toward und
standing the dynamics of crumpled elastic sheets. We
that the ridge structures in crumpled sheets qualitativ
modify the propagation of transverse waves. Despite
stress induced by the ridges, our analysis indicates that
stretched string or drumhead modes normally associated
a stretched membrane are not important in a crumpled sh
Our analysis suggested that the ridges would act as bar
to propagation and also that there could be modes that
trapped in the facets. These modes are unable to pene
the ridges because the associated skin depth is much
than the ridge width in the thin limit. Our numerical simula
tions gave us qualitative evidence that the above picture
right. Corresponding trapping phenomena should oc
whenever a real crumpled sheet is vibrated. This means
crumpled sheets inhibit propagation of vibrational wav
through the material. The present line of analysis sugges
way to treat this type of trapping phenomenon. One m
application of our work, therefore, would be to see if th
trapping of energy can be observed experimentally in
laboratory. Future work could focus on subjecting our p
dictions to a more thorough simulation analysis that co
support our findings in a more quantitative fashion as wel
identify the trapping of modes in the right frequency regim
It would also be interesting to extend the analysis to co
the low frequency regime.

ACKNOWLEDGMENTS

The authors would like to thank Denis Chigirev and Vija
Patel for developing early versions of the simulation p
gram used. A.G. would like to thank members of the Witt
group and Brian DiDonna in particular for enlightening co
versations. This work was supported in part by the Natio
Science Foundation under Award number DMR-99755
and in part by the National Science Foundation’s MRS
program under Award Number DMR-980859. S.C.V. w
also supported by the Alfred P. Sloan, Jr. Foundation.
3-10



di
,

TRAPPING OF VIBRATIONAL ENERGY IN CRUMPLED SHEETS PHYSICAL REVIEW E65 036613
@1# C. M. Soukoulis and E. N. Economou, Waves Random Me
9, 255 ~1999!.

@2# R. Blandford and R. Narayan, Astrophys. J.310, 568 ~1986!.
@3# L. D. Landau and E. M. Lifshitz,Theory of Elasticity~Perga-

mon, Oxford, 1986!.
@4# R. S. Milman and G. D. Parker,Elements of Differential Ge-

ometry~Prentice Hall, New Jersey, 1977!.
@5# T. von Karman,Collected Works~Butterworth, London 1956!.
@6# E. E. Lobkovsky, Phys. Rev. E53, 3750~1996!.
@7# A. D. Pierce,Elastic Wave Propagation~North-Holland, Am-
03661
a sterdam, 1989!, p. 205.
@8# H. Goldstein,Classical Mechanics~Addison Wesley, Reading

Massachusetts, 1980!, p. 66.
@9# T. A. Witten and Hao Li, Europhys. Lett.23, 51 ~1993!.

@10# A. E. Lobkovsky and T. A. Witten, Phys. Rev. E55, 1577
~1997!.

@11# H. S. Seung and D. R. Nelson, Phys. Rev. A38, 1005~1988!.
@12# B. A. DiDonna and T. A. Witten, Phys. Rev. Lett.87, 206105

~2001!; e-print cond-mat/0104119.
@13# A. E. Lobkovskyet al., Science270, 1482~1995!.
3-11


